133 research outputs found

    How the Ecdysozoan Changed Its Coat

    Get PDF
    External skeletons are found in a variety of animals, including arthropods and nematodes. Much remains to be learned about the process of replacing the exoskeleton (molting) during growth

    Oncolog, Volume 36, Issue 01, January-March 1991

    Get PDF
    Decision making in critical illness: Who knows best? Successful Hodgkin\u27s disease treatment can also preserve reproductive function Chromosomes and cancerhttps://openworks.mdanderson.org/oncolog/1033/thumbnail.jp

    The circadian clock gates Drosophila adult emergence by controlling the timecourse of metamorphosis

    Get PDF
    The daily rhythm of adult emergence of holometabolous insects is one of the first circadian rhythms to be studied. In these insects, the circadian clock imposes a daily pattern of emergence by allowing or stimulating eclosion during certain windows of time and inhibiting emergence during others, a process that has been described as “gating.” Although the circadian rhythm of insect emergence provided many of the key concepts of chronobiology, little progress has been made in understanding the bases of the gating process itself, although the term “gating” suggests that it is separate from the developmental process of metamorphosis. Here, we follow the progression through the final stages of Drosophila adult development with single-animal resolution and show that the circadian clock imposes a daily rhythmicity to the pattern of emergence by controlling when the insect initiates the final steps of metamorphosis itself. Circadian rhythmicity of emergence depends on the coupling between the central clock located in the brain and a peripheral clock located in the prothoracic gland (PG), an endocrine gland whose only known function is the production of the molting hormone, ecdysone. Here, we show that the clock exerts its action by regulating not the levels of ecdysone but that of its actions mediated by the ecdysone receptor. Our findings may also provide insights for understanding the mechanisms by which the daily rhythms of glucocorticoids are produced in mammals, which result from the coupling between the central clock in the suprachiasmatic nucleus and a peripheral clock located in the suprarenal gland.Fil: Brandon, Mark Thomas. Universidad de ValparaĂ­so; Chile. University of Washington; Estados UnidosFil: Bustos GonzĂĄlez, Liliana. Universidad de ValparaĂ­so; ChileFil: Cascallares, Maria Guadalupe. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Subsede Instituto Nacional de InvestigaciĂłn y Desarrollo Pesquero; Argentina. Universidad de ValparaĂ­so; ChileFil: Conejera, Felipe. Universidad de ValparaĂ­so; ChileFil: Ewer, John. Universidad de ValparaĂ­so; Chil

    Inflight transmission of COVID-19 based on experimental aerosol dispersion data

    Get PDF
    Background: An issue of concern to the travelling public is the possibility of in-flight transmission of COVID-19 during long- and short-haul flights. The aviation industry maintains that the probability of contracting the illness is small based on reported cases, modelling and data from aerosol dispersion experiments conducted on-board aircraft. Methods: Using experimentally derived aerosol dispersion data for a B777–200 aircraft and a modified version of the Wells-Riley equation we estimate inflight infection probability for a range of scenarios involving quanta generation rate and face mask efficiency. Quanta generation rates were selected based on COVID-19 events reported in the literature while mask efficiency was determined from the aerosol dispersion experiments. Results: The MID-AFT cabin exhibits the highest infection probability. The calculated maximum individual infection probability (without masks) for a 2-hour flight in this section varies from 4.5% for the ‘Mild Scenario’ to 60.2% for the ‘Severe Scenario’ although the corresponding average infection probability varies from 0.1% to 2.5%. For a 12-hour flight, the corresponding maximum individual infection probability varies from 24.1% to 99.6% and the average infection probability varies from 0.8% to 10.8%. If all passengers wear face masks throughout the 12-hour flight, the average infection probability can be reduced by approximately 73%/32% for high/low efficiency masks. If face masks are worn by all passengers except during a one-hour meal service, the average infection probability is increased by 59%/8% compared to the situation where the mask is not removed. Conclusions: This analysis has demonstrated that while there is a significant reduction in aerosol concentration due to the nature of the cabin ventilation and filtration system, this does not necessarily mean that there is a low probability or risk of in-flight infection. However, mask wearing, particularly high-efficiency ones, significantly reduces this risk

    Plug-and-play genetic access to drosophila cell types using exchangeable exon cassettes.

    Get PDF
    Genetically encoded effectors are important tools for probing cellular function in living animals, but improved methods for directing their expression to specific cell types are required. Here, we introduce a simple, versatile method for achieving cell-type-specific expression of transgenes that leverages the untapped potential of "coding introns" (i.e., introns between coding exons). Our method couples the expression of a transgene to that of a native gene expressed in the cells of interest using intronically inserted "plug-and-play" cassettes (called "Trojan exons") that carry a splice acceptor site followed by the coding sequences of T2A peptide and an effector transgene. We demonstrate the efficacy of this approach in Drosophila using lines containing suitable MiMIC (Minos-mediated integration cassette) transposons and a palette of Trojan exons capable of expressing a range of commonly used transcription factors. We also introduce an exchangeable, MiMIC-like Trojan exon construct that can be targeted to coding introns using the Crispr/Cas system.This work was supported by the Intramural Research Program of the National Institute of Mental Health (B.H.W.) and by grants from the Whitehall Foundation (C.J.P.), NIH (R01DC013070, C.J.P.), the Wellcome Trust (H.I. and M.L.), and the Sir Isaac Newton Trust, Cambridge (M.L.). J.E. was supported by FONDECYT #1141278 and the CINV, which is supported by the Millennium Scientific Initiative of the Ministerio de Economía, Fomento y Turismo. We thank the Bellen laboratory and the Drosophila Gene Disruption Project at Baylor College of Medicine, the Bloomington Stock Center (NIH P40OD018537), and Julie Simpson for fly lines. Thanks also to Aaron DiAntonio, Aaron Hsueh, and John Reinitz for antibodies and the NINDS Sequencing Core Facility for DNA sequencing. Finally, thanks to Sarah Naylor for technical help and Grace Gray, Herman Dierick, Koen Venken, and Hugo Bellen for comments on the manuscript and productive discussions.This is the final published version. It first appeared at http://www.ncbi.nlm.nih.gov/pubmed/25732830
    • 

    corecore